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Context

Cryptographic Algorithm: perfect from a logical point of view but
processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to
recover the secret

Masking/Secret Sharing: renders any intermediate value
independent from the secret . . . without modifying algorithm’s
results

d th-order SCA (dO-SCA): d intermediate values targeted

d th-order Masking: renders any vector of d intermediate values
independent from the secret
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d th-Order Masking

d th-order masking:

Every secret-dependent variable x is shared into d + 1
variables:

x = x0 ⊥ x1
−1 ⊥ . . . ⊥ xd

−1 (1)

A group operation ⊥

= {⊕}

The masks (xi )i≥1 are randomly generated

The masked variable: x0 ← x ⊥ x1 ⊥ . . . ⊥ xd

Additive −→ x0 ← x ⊕ x1 ⊕ . . .⊕ xd

Multiplicative −→ x0 ← x ⊗ x1 ⊗ . . .⊗ xd , x , xi 6= 0
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Masking Propagation

Additive masking and linear operation.
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Application

How to apply masking on block ciphers implementations which mix
affine transformations and power functions?

Related Works for d ≥ 2:

d = 2 : [RivainDottaxProuff08]
[SchrammPaar06]

d > 2 : [RivainProuff10]

 additive masking

Our Approach: use multiplicative masking for power functions and
additive masking for affine transformations

[GenelleProuffQuisquater10] for d = 1
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General Processing

Mapping from GF (2n) into GF (2n)∗ (and conversely):
[GenelleProuffQuisquater2011]
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Issue

Conversion from additive to multiplicative masking (AMtoMM),
which is d th-order secure

Notations:

Additive masks x1, . . . , xd (SAM)

Multiplicative masks z1, . . . , zd (SMM)

Goal:
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An Intuitive Attempt
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Security

Three intermediate values:

xd ,

xd ⊗ z1 ⊗ . . .⊗ zd

→ z1 ⊗ . . .⊗ zd

x ⊗ z1 ⊗ . . .⊗ zd

→ x

Conversion algorithm is secure when d = 1 or d = 2, but not when
d > 2.

Idea: mask at order 1 some additional intermediate values in such
that propagation stays straightforward.
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Our Proposal (AMtoMM)
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Application to a known block cipher

AES:

linear layers

non-linear layer (s-box): composition of an extended
multiplicative inverse in GF (28) and an affine transformation

Inverse: x 7→ x254 if x 6= 0, and equals 0 otherwise

Sum-up: AES mixes affine transformations and a power function
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Comparison of AES implementations

Implementation of existing secure methods (encryption AES-128,
8051 based 8-bit architecture)

For d = 1:

table re-computation [Messerges00]

tower fields [OswaldMangardPramstaller04]

multiplicative masking [GenelleProuffQuisquater10]

secure exponentiation [RivainProuff10]

For d = 2:

double re-computation [SchrammPaar06]

single re-computation [RivainDottaxProuff08]

secure exponentiation [RivainProuff10]

For d = 3:

secure exponentiation [RivainProuff10]
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Comparison of AES implementations

Method Cycles (103) Memory (bytes)
Unprotected Implementation

No Masking 2 32

d = 1
table re-computation 10 256

tower fields 77 42
multiplicative masking 22 256

secure exponentiation for d = 1 73 24
our scheme for d = 1 25 50

youhou
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Conclusion

Our countermeasure:

dO-SCA resistant (proved)

best trade-off timing/memory consumptions

applicable at order 2 and 3 for today products
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Thank you!
Questions?
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