Thwarting Higher-Order SCA with Additive and Multiplicative Masking

Laurie Genelle ${ }^{1}$, Emmanuel Prouff ${ }^{1}$ and Michael Quisquater ${ }^{2}$
1 Oberthur Technologies
2 University of Versailles

Context

Context

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Context

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Context

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Countermeasure?

Context

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Masking/Secret Sharing: renders any intermediate value independent from the secret ... without modifying algorithm's results

Context

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Masking/Secret Sharing: renders any intermediate value independent from the secret . . . without modifying algorithm's results

Order?

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Masking/Secret Sharing: renders any intermediate value independent from the secret ... without modifying algorithm's results
$d^{\text {th }}$-order SCA (dO-SCA): d intermediate values targeted

Cryptographic Algorithm: perfect from a logical point of view but processing leaks information

Side Channel Analysis (SCA): analyzes the physical leakage to recover the secret

Masking/Secret Sharing: renders any intermediate value independent from the secret . . . without modifying algorithm's results
$d^{\text {th }}$-order SCA (dO-SCA): d intermediate values targeted
$d^{\text {th }}$-order Masking: renders any vector of d intermediate values independent from the secret
$d^{\text {th }}$-order masking:

- Every secret-dependent variable x is shared into $d+1$ variables:

$$
\begin{equation*}
x=x_{0} \perp x_{1}{ }^{-1} \perp \ldots \perp x_{d}{ }^{-1} \tag{1}
\end{equation*}
$$

- A group operation \perp
$d^{\text {th }}$-order masking:
- Every secret-dependent variable x is shared into $d+1$ variables:

$$
\begin{equation*}
x=x_{0} \perp x_{1}{ }^{-1} \perp \ldots \perp x_{d}{ }^{-1} \tag{1}
\end{equation*}
$$

- A group operation \perp
- The masks $\left(x_{i}\right)_{i \geq 1}$ are randomly generated
$d^{\text {th }}$-order masking:
- Every secret-dependent variable x is shared into $d+1$ variables:

$$
\begin{equation*}
x=x_{0} \perp x_{1}{ }^{-1} \perp \ldots \perp x_{d}{ }^{-1} \tag{1}
\end{equation*}
$$

- A group operation \perp
- The masks $\left(x_{i}\right)_{i \geq 1}$ are randomly generated
- The masked variable: $x_{0} \leftarrow x \perp x_{1} \perp \ldots \perp x_{d}$
$d^{\text {th }}$-order masking:
- Every secret-dependent variable x is shared into $d+1$ variables:

$$
\begin{equation*}
x=x_{0} \perp x_{1}{ }^{-1} \perp \ldots \perp x_{d}{ }^{-1} \tag{1}
\end{equation*}
$$

- A group operation $\perp=\{\oplus\}$
- The masks $\left(x_{i}\right)_{i \geq 1}$ are randomly generated
- The masked variable: $x_{0} \leftarrow x \perp x_{1} \perp \ldots \perp x_{d}$

$$
\text { Additive } \longrightarrow \quad x_{0} \leftarrow x \oplus x_{1} \oplus \ldots \oplus x_{d}
$$

$d^{\text {th }}$-order masking:

- Every secret-dependent variable x is shared into $d+1$ variables:

$$
\begin{equation*}
x=x_{0} \perp x_{1}{ }^{-1} \perp \ldots \perp x_{d}{ }^{-1} \tag{1}
\end{equation*}
$$

- A group operation $\perp=\{\oplus, \otimes\}$
- The masks $\left(x_{i}\right)_{i \geq 1}$ are randomly generated
- The masked variable: $x_{0} \leftarrow x \perp x_{1} \perp \ldots \perp x_{d}$

Additive $\longrightarrow \quad x_{0} \leftarrow x \oplus x_{1} \oplus \ldots \oplus x_{d}$
Multiplicative $\longrightarrow \quad x_{0} \leftarrow x \otimes x_{1} \otimes \ldots \otimes x_{d}, \quad x, x_{i} \neq 0$

Masking Propagation

Additive masking and linear operation.

$$
\mathbf{x}_{\mathbf{0}}=\mathbf{x} \oplus \mathbf{x}_{\mathbf{1}} \oplus \ldots \oplus \mathbf{x}_{\mathbf{d}}
$$

Masking Propagation

Additive masking and linear operation.

Masking Propagation

Additive masking and linear operation.

Masking Propagation

Additive masking and power operation.

Masking Propagation

Additive masking and power operation.

Masking Propagation

Multiplicative masking and power operation.

Multiplicative masking and power operation.

Application

How to apply masking on block ciphers implementations which mix affine transformations and power functions?

Application

How to apply masking on block ciphers implementations which mix affine transformations and power functions?

Related Works for $d \geq 2$:

$$
\begin{array}{ll}
d=2: & \text { [RivainDottaxProuff08] } \\
& {[\text { [SchrammPaar06] }} \\
d>2: & {[\text { RivainProuff10] }}
\end{array}
$$

Application

How to apply masking on block ciphers implementations which mix affine transformations and power functions?

Related Works for $d \geq 2$:

$$
\left.\left.\begin{array}{ll}
d=2: & {[\text { RivainDottaxProuff08 }]} \\
d>2: & {[\text { SchrammPaar06] }}
\end{array}\right\} \text { RivainProuff10] } \quad\right\} \text { additive masking }
$$

Application

How to apply masking on block ciphers implementations which mix affine transformations and power functions?

Related Works for $d \geq 2$:

Our Approach: use multiplicative masking for power functions and additive masking for affine transformations

Application

How to apply masking on block ciphers implementations which mix affine transformations and power functions?

Related Works for $d \geq 2$:

Our Approach: use multiplicative masking for power functions and additive masking for affine transformations
[GenelleProuffQuisquater10] for $d=1$

General Processing

Additively masked

Multiplicatively masked

Power Op

General Processing

Additively masked

General Processing

General Processing

Additively masked

Mapping from $G F\left(2^{n}\right)$ into $G F\left(2^{n}\right)^{*}$ (and conversely): [GenelleProuffQuisquater2011]

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(\mathcal{S}_{A M}\right)$

■ Multiplicative masks $z_{1}, \ldots, z_{d}\left(\mathcal{S}_{M M}\right)$

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(S_{A M}\right)$
- Multiplicative masks $z_{1}, \ldots, z_{d}\left(\mathcal{S}_{M M}\right)$

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(\mathcal{S}_{A M}\right)$

■ Multiplicative masks $z_{1}, \ldots, z_{d}\left(S_{M M}\right)$

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(\mathcal{S}_{A M}\right)$

■ Multiplicative masks $z_{1}, \ldots, z_{d}\left(\mathcal{S}_{M M}\right)$

Goal:
Input

$$
\begin{array}{ll}
\mathrm{x}_{0}=\mathrm{x} \oplus \mathrm{x}_{1} \oplus \ldots \oplus \mathrm{x}_{\mathrm{d}}, \\
\mathcal{S}_{\mathrm{AM}}=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{d}}\right\}, \\
\mathcal{S}_{\mathrm{MM}}=\emptyset
\end{array} \quad \text { AMtoMM } \quad \begin{aligned}
& \mathrm{z}_{0}=\mathrm{x} \otimes \mathrm{z}_{1} \otimes \ldots \otimes \mathbf{z}_{\mathrm{d}}, \\
& \mathcal{S}_{\mathbf{A M}}=\emptyset, \\
& \mathcal{S}_{\mathbf{M M}}=\left\{\mathbf{z}_{\mathbf{1}}, \ldots, \mathbf{z}_{\mathbf{d}}\right\}
\end{aligned}
$$

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(\mathcal{S}_{A M}\right)$

■ Multiplicative masks $z_{1}, \ldots, z_{d}\left(\mathcal{S}_{M M}\right)$

Goal:
Input

$$
\begin{array}{ll}
\mathbf{x}_{\mathbf{0}}=\mathbf{x} \oplus \mathbf{x}_{\mathbf{1}} \oplus \ldots \oplus \mathbf{x}_{\mathbf{d}}, & \text { AMtoMM } \\
\mathcal{S}_{\mathrm{AM}}=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathrm{d}}\right\}, \\
\mathcal{S}_{\mathrm{MM}}=\emptyset
\end{array} \quad \begin{aligned}
& \mathbf{z}_{\mathbf{0}}=\mathbf{x} \otimes \mathbf{z}_{\mathbf{1}} \otimes \ldots \otimes \mathbf{z}_{\mathbf{d}}, \\
& \mathcal{S}_{\mathrm{AM}}=\emptyset, \\
& \mathcal{S}_{\mathrm{MM}}=\left\{\mathbf{z}_{\mathbf{1}}, \ldots, \mathbf{z}_{\mathbf{d}}\right\}
\end{aligned}
$$

Conversion from additive to multiplicative masking (AMtoMM), which is $d^{\text {th }}$-order secure

Notations:

- Additive masks $x_{1}, \ldots, x_{d}\left(\mathcal{S}_{A M}\right)$

■ Multiplicative masks $z_{1}, \ldots, z_{d}\left(\mathcal{S}_{M M}\right)$

Goal:
Input

$$
\begin{array}{ll}
\mathbf{x}_{\mathbf{0}}=\mathbf{x} \oplus \mathbf{x}_{\mathbf{1}} \oplus \ldots \oplus \mathbf{x}_{\mathbf{d}}, & \text { AMtoMM } \\
\mathcal{S}_{\mathbf{A M}}=\left\{\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{d}}\right\}, & \\
\mathcal{S}_{\mathbf{M M}}=\emptyset & \mathbf{z}_{\mathbf{0}}=\mathbf{x} \otimes \mathbf{z}_{\mathbf{1}} \otimes \ldots \otimes \mathbf{z}_{\mathbf{d}}, \\
\mathcal{S}_{\mathrm{AM}}=\emptyset, \\
\mathcal{S}_{\mathrm{MM}}=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{d}}\right\}
\end{array}
$$

An Intuitive Attempt

Masked value
x_{0}

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$
x_{1}

Multiplicative $\left(\mathcal{S}_{\mathrm{MM}}\right)$
\emptyset

An Intuitive Attempt

Masked value

Additive masks ($\mathcal{S}_{\mathrm{AM}}$)
X_{1}
$\mathbf{x}_{1} \otimes \mathrm{z}_{1}$
$\mathbf{x}_{2} \otimes \mathbf{z}_{1}$
$\underset{\text { masks }}{\text { Multiplicative }}\left(\mathcal{S}_{\mathrm{MM}}\right)$

An Intuitive Attempt

Additive masks ($\mathcal{S}_{\mathrm{AM}}$)
X_{1}
$\mathrm{X}_{1} \otimes \mathrm{z}_{1}$
$\underset{\text { masks }}{\text { Multiplicative }}\left(\mathcal{S}_{\mathrm{MM}}\right)$

Z_{1}

An Intuitive Attempt

An Intuitive Attempt

Masked value
X_{0}
$\left(\mathbf{x}_{\mathbf{0}} \oplus \mathbf{x}_{1}\right) \otimes \mathbf{z}_{1}$

An Intuitive Attempt

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$

$\mathrm{X}_{1} \otimes \mathrm{z}_{1}$

x_{2}

$\mathrm{X}_{2} \otimes \mathrm{z}_{1}$
$\mathrm{x}_{2} \otimes \mathrm{z}_{1}$
Z_{1}
Z_{1}

An Intuitive Attempt

An Intuitive Attempt

An Intuitive Attempt

An Intuitive Attempt

```
Masked value
x
\mp@subsup{x}{0}{}\otimes}\otimes\mp@subsup{z}{1}{
(\mp@subsup{x}{0}{}\oplus\mp@subsup{\textrm{x}}{1}{})\otimes\mp@subsup{\textrm{z}}{1}{}
(\mp@subsup{\mathbf{x}}{0}{}\oplus\mp@subsup{\textrm{X}}{1}{})\otimes\mp@subsup{\textrm{z}}{1}{}\otimes\mp@subsup{\textrm{z}}{2}{}
(\mp@subsup{\mathbf{x}}{\mathbf{0}}{}\oplus\mp@subsup{\mathbf{x}}{1}{}\oplus\mp@subsup{\mathbf{x}}{\mathbf{2}}{})\otimes\mp@subsup{\mathbf{z}}{1}{}\otimes\mp@subsup{\mathbf{z}}{2}{}
```

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$

X_{1}

$\mathrm{x}_{1} \otimes \mathrm{z}_{1} \quad \mathrm{x}_{2} \otimes \mathrm{z}_{1}$
X_{2}
$\underset{\text { masks }}{\text { Multiplicative }}\left(\mathcal{S}_{\mathrm{MM}}\right)$

```
0
Z
```

 \(\mathrm{Z}_{1}\)
 Z_{1}

An Intuitive Attempt

\emptyset

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$

$\mathrm{x}_{1} \otimes \mathrm{z}_{1}$

X_{1}

```
    masks (S SMM
    0
    Z
    Z
    \mp@subsup{Z}{1}{}
    Z1
```


An Intuitive Attempt

```
Masked value
X0
\mp@subsup{x}{0}{}\otimes}\otimes\mp@subsup{z}{1}{
( }\mp@subsup{\textrm{X}}{0}{}\oplus\mp@subsup{\textrm{X}}{1}{})\otimes\mp@subsup{\textrm{z}}{1}{
(\mp@subsup{\mathbf{x}}{0}{}\oplus\mp@subsup{\mathbf{x}}{1}{})\otimes\mp@subsup{\mathbf{z}}{1}{}\otimes\mp@subsup{\mathbf{z}}{2}{}
(\mp@subsup{x}{0}{}\oplus\mp@subsup{\mathbf{x}}{1}{}\oplus\mp@subsup{\mathbf{x}}{2}{})\otimes\mp@subsup{\mathbf{z}}{1}{}\otimes\mp@subsup{\mathbf{z}}{2}{}
x}\otimes\mp@subsup{\mathbf{z}}{1}{}\otimes\mp@subsup{\mathbf{z}}{2}{
```

Three intermediate values:

- x_{d},
$\square x_{d} \otimes z_{1} \otimes \ldots \otimes z_{d}$
$\square x \otimes z_{1} \otimes \ldots \otimes z_{d}$

Three intermediate values:

- X_{d},
$\square x_{d} \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow z_{1} \otimes \ldots \otimes z_{d}$
$\square x \otimes z_{1} \otimes \ldots \otimes z_{d}$

Three intermediate values:

- x_{d},
$\square x_{d} \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow z_{1} \otimes \ldots \otimes z_{d}$
$\square x \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow x$

Security

Three intermediate values:

- x_{d},
$\square x_{d} \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow z_{1} \otimes \ldots \otimes z_{d}$
$\square x \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow x$
Conversion algorithm is secure when $d=1$ or $d=2$, but not when $d>2$.

Security

Three intermediate values:

- x_{d},
$\square x_{d} \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow z_{1} \otimes \ldots \otimes z_{d}$
■ $x \otimes z_{1} \otimes \ldots \otimes z_{d} \rightarrow x$
Conversion algorithm is secure when $d=1$ or $d=2$, but not when $d>2$.

Idea: mask at order 1 some additional intermediate values in such that propagation stays straightforward.

Our Proposal (AMtoMM)

Masked value
x_{0}

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$
x_{1}
$\underset{\text { masks }}{\text { Multiplicative }}\left(\mathcal{S}_{\mathrm{MM}}\right)$
\emptyset

Our Proposal (AMtoMM)

Our Proposal (AMtoMM)

```
l}\mp@subsup{l}{\mathrm{ Masked value }}{l
```


Our Proposal (AMtoMM)

Masked value x_{0} $\mathrm{x}_{0} \otimes \mathrm{z}_{1}$ $\mathrm{x}_{0} \otimes \mathrm{z}_{1}$ $\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1}\right) \otimes \mathrm{z}_{1} \otimes \mathrm{z}_{2} \oplus \mathrm{~m}_{1} \otimes \mathrm{z}_{2}$ $\left(\mathbf{x}_{\mathbf{0}} \oplus \mathbf{x}_{\mathbf{1}} \oplus \mathbf{x}_{\mathbf{2}}\right) \otimes \mathbf{z}_{\mathbf{1}} \otimes \mathbf{z}_{\mathbf{2}}$

Our Proposal (AMtoMM)

Masked value x_{0} $\mathrm{x}_{0} \otimes \mathrm{z}_{1}$ $\mathrm{x}_{0} \otimes \mathrm{z}_{1}$ $\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1}\right) \otimes \mathrm{z}_{1} \otimes \mathrm{z}_{2} \oplus \mathrm{~m}_{1} \otimes \mathrm{z}_{2}$ $\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1} \oplus \mathrm{x}_{2}\right) \otimes \mathrm{z}_{1} \otimes \mathrm{z}_{2}$ $\mathbf{x} \otimes \mathbf{z}_{\mathbf{1}} \otimes \mathbf{z}_{\mathbf{2}}$

Additive masks $\left(\mathcal{S}_{\mathrm{AM}}\right)$			Multiplicative $\left(\mathcal{S}_{\mathrm{MM}}\right)$ masks	
X_{1}		X_{2}	\emptyset	
		$\mathrm{X}_{2} \otimes \mathrm{z}_{1}$	Z_{1}	
$\mathrm{x}_{1} \otimes \mathrm{z}_{1} \oplus \mathrm{~m}_{1}$	m_{1}	$\mathrm{X}_{2} \otimes \mathrm{z}_{1}$	Z_{1}	
	$\mathrm{m}_{1} \otimes \mathrm{z}_{2}$	$\mathrm{X}_{2} \otimes \mathrm{z}_{1} \otimes \mathrm{z}_{2}$	Z_{1}	Z_{2}
	\emptyset		z_{1}	Z_{2}

Application to a known block cipher

Application to a known block cipher

AES:

- linear layers
- non-linear layer (s-box): composition of an extended multiplicative inverse in $G F\left(2^{8}\right)$ and an affine transformation

Application to a known block cipher

AES:

- linear layers
- non-linear layer (s-box): composition of an extended multiplicative inverse in $G F\left(2^{8}\right)$ and an affine transformation

Inverse: $x \mapsto x^{254}$ if $x \neq 0$, and equals 0 otherwise

Application to a known block cipher

AES:

- linear layers
- non-linear layer (s-box): composition of an extended multiplicative inverse in $G F\left(2^{8}\right)$ and an affine transformation

Inverse: $x \mapsto x^{254}$ if $x \neq 0$, and equals 0 otherwise

Sum-up: AES mixes affine transformations and a power function

Comparison of AES implementations

Implementation of existing secure methods (encryption AES-128, 8051 based 8-bit architecture)

Comparison of AES implementations

Implementation of existing secure methods (encryption AES-128, 8051 based 8-bit architecture)

For $d=1$:

- table re-computation [Messerges00]
- tower fields [OswaldMangardPramstaller04]

■ multiplicative masking [GenelleProuffQuisquater10]

- secure exponentiation [RivainProuff10]

Comparison of AES implementations

Implementation of existing secure methods (encryption AES-128, 8051 based 8-bit architecture)

For $d=1$:

- table re-computation [Messerges00]
- tower fields [OswaldMangardPramstaller04]
- multiplicative masking [GenelleProuffQuisquater10]
- secure exponentiation [RivainProuff10]

For $d=2$:

- double re-computation [SchrammPaar06]
- single re-computation [RivainDottaxProuff08]
- secure exponentiation [RivainProuff10]

For $d=3$:

- secure exponentiation [RivainProuff10]

Comparison of AES implementations

Method	Cycles (10	
Unprotected	Memplementation (bytes)	
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for $\mathbf{d}=\mathbf{1}$	$\mathbf{2 5}$	$\mathbf{5 0}$

Comparison of AES implementations

Method	Cycles (10	
Unprotected	Memory (bytes)	
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for $\mathbf{d}=1$	25	50

Comparison of AES implementations

Method	Cycles (10	
Unprotected	Implementation	
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for d = 1	$\mathbf{2 5}$	$\mathbf{5 0}$
$d=2$		
double re-computations	594	$512+28$
single re-computation	672	$256+22$
secure exponentiation for $d=2$	189	48
our scheme for d $=\mathbf{2}$	$\mathbf{6 9}$	$\mathbf{8 6}$

Comparison of AES implementations

Method	Cycles (10	
Unprotected	Implementation	Memory (bytes)
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for d =1	$\mathbf{2 5}$	50
double re-computations	$=2$	594
single re-computation	672	$256+22$
secure exponentiation for $d=2$	189	48
our scheme for d $=2$	69	86

Comparison of AES implementations

Method	Cycles (103)	Memory (bytes)
Unprotected Implementation		
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for $\mathbf{d}=1$	25	50
$d=2$		
double re-computations	594	$512+28$
single re-computation	672	$256+22$
secure exponentiation for $d=2$	189	48
our scheme for $\mathbf{d}=2$	69	86
$d=3$		
secure exponentiation for $d=3$	326	72
our scheme for $\mathbf{d}=3$	180	128

Comparison of AES implementations

Method	Cycles (10 ${ }^{3}$)	Memory (bytes)
Unprotected Implementation		
No Masking	2	32
$d=1$		
table re-computation	10	256
tower fields	77	42
multiplicative masking	22	256
secure exponentiation for $d=1$	73	24
our scheme for $\mathbf{d}=1$	25	50
$d=2$		
double re-computations	594	$512+28$
single re-computation	672	$256+22$
secure exponentiation for $d=2$	189	48
our scheme for $\mathbf{d}=2$	69	86
$d=3$		
secure exponentiation for $d=3$	326	72
our scheme for $\mathbf{d}=3$	180	128

Conclusion

Our countermeasure:

- dO-SCA resistant (proved)
- best trade-off timing/memory consumptions
- applicable at order 2 and 3 for today products

Thank you! Questions?

